11 research outputs found

    Parameter estimation with mixed quantum states

    Full text link
    We consider quantum enhanced measurements with initially mixed states. We show very generally that for any linear propagation of the initial state that depends smoothly on the parameter to be estimated, the sensitivity is bound by the maximal sensitivity that can be achieved for any of the pure states from which the initial density matrix is mixed. This provides a very general proof that purely classical correlations cannot improve the sensitivity of parameter estimation schemes in quantum enhanced measurement schemes.Comment: 6 page

    Experimentally feasible measures of distance between quantum operations

    Full text link
    We present two measures of distance between quantum processes based on the superfidelity, introduced recently to provide an upper bound for quantum fidelity. We show that the introduced measures partially fulfill the requirements for distance measure between quantum processes. We also argue that they can be especially useful as diagnostic measures to get preliminary knowledge about imperfections in an experimental setup. In particular we provide quantum circuit which can be used to measure the superfidelity between quantum processes. As the behavior of the superfidelity between quantum processes is crucial for the properties of the introduced measures, we study its behavior for several families of quantum channels. We calculate superfidelity between arbitrary one-qubit channels using affine parametrization and superfidelity between generalized Pauli channels in arbitrary dimensions. Statistical behavior of the proposed quantities for the ensembles of quantum operations in low dimensions indicates that the proposed measures can be indeed used to distinguish quantum processes.Comment: 9 pages, 4 figure

    Partitioned trace distances

    Full text link
    New quantum distance is introduced as a half-sum of several singular values of difference between two density operators. This is, up to factor, the metric induced by so-called Ky Fan norm. The partitioned trace distances enjoy similar properties to the standard trace distance, including the unitary invariance, the strong convexity and the close relations to the classical distances. The partitioned distances cannot increase under quantum operations of certain kind including bistochastic maps. All the basic properties are re-formulated as majorization relations. Possible applications to quantum information processing are briefly discussed.Comment: 8 pages, no figures. Significant changes are made. New section on majorization is added. Theorem 4.1 is extended. The bibliography is enlarged

    Notes on entropic characteristics of quantum channels

    Full text link
    One of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss few channel characteristics expressed by means of generalized entropies. Such characteristics can often be dealt in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the qq-average output entropy of degree q1q\geq1 is bounded from above by the qq-entropy of the input density matrix. Concavity properties of the (q,s)(q,s)-entropy exchange are considered. Fano type quantum bounds on the (q,s)(q,s)-entropy exchange are derived. We also give upper bounds on the map (q,s)(q,s)-entropies in terms of the output entropy, corresponding to the completely mixed input.Comment: 10 pages, no figures. The statement of Proposition 1 is explicitly illustrated with the depolarizing channel. The bibliography is extended and updated. More explanations. To be published in Cent. Eur. J. Phy

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa
    corecore